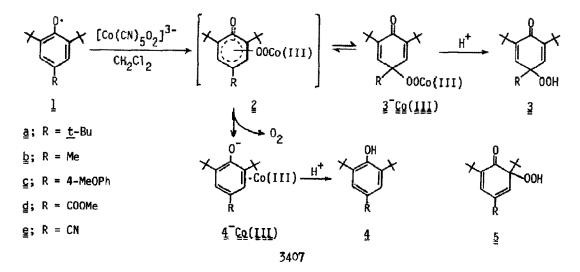
Tetrahedron Letters Vol. 21, pp 3407 - 3408 © Pergamon Press Ltd. 1980. Printed in Great Britain 0040-4039/80/0822-3407\$02.00/0


REACTION OF SUPEROXO Co(III) COMPLEX WITH STABLE PHENOXY RADICALS

A. Nishinaga,* H. Tomita, and T. Matsuura Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Kyoto, Japan

A typical superoxo complex $[Co(CN)_50_2][Ph_3^{P=N^{\pm}PPh_3}]_3$ combines with stable phenoxy radicals in CH_2Cl_2 leading to selective formation of peroxy-<u>p</u>-quinols except for 2,4, 6-tri-<u>t</u>-butylphenoxy radical, representing radical reactivity of the complex.

Although superoxo metal complexes are considered to play an important role in biological oxygenations, only a little is known about the chemical reactivity of superoxo complexes towards organic molecules.¹ Superoxo Co(III)-Schiff base complexes have been shown to abstract hydrogen from 2,6-di-<u>t</u>-butylphenols giving rise to the corresponding phenoxy radicals² whereas the super-oxo complex $[Co(CN)_5O_2]^{3-}$ acts as a base towards these phenols to give phenolato Co(III) complexes³

In the present communication, we wish to report that the superoxo complex $[Co(CN)_5O_2]^{3-}$ displays radical reactivity towards stable 2,6-di-<u>t</u>-butylphenoxy radicals (<u>1</u>). When equimolar amounts of $[Co(CN)_5O_2][Ph_3P=N^{\pm}PPh_3]^3$ and <u>1</u> were mixed in CH_2Cl_2 at -70 °C under efficient nitrogen bubbling, the color of the radical <u>1</u> disappeared. The reaction rate depended upon the nature of the group R in <u>1</u>. Filtration of the resulting mixture through a short column of silica gel gave the parent phenols <u>4</u> and the peroxy-<u>p</u>-quinols <u>3</u> (Table 1).

1	Reaction Temperature (°C)	Reaction Time (min)	Conversion (%)	Product Yield (%) ^b		
				3	4	5
<u>]</u> a	-70	60	94	20	13	67
la	0	4	100	26	29	45
la	20	1	100	15	59	26
l₫	-70	5	100	70	30	-
<u>lc</u>	-70	30	100	90	10	-
₫c	-70	10	100	58 ^d	42	-
<u>1</u> ₫ ^с <u>1</u> € ^с	-70	120	100	29 ^d	71	-

Table 1. Reaction of $[Co(CN)_5 O_2]^{3-}$ with Stable Phenoxy Radicals in $CH_2 Cl_2$.^a

¹/_a A solution of <u>1</u> (0.2 mmol) in benzene (3 ml) prepared by alkaline $Fe(CN)_{6}^{3^{-}}$ oxidation of the parent phenol <u>4</u> was added to a solution of $[Co(CN)_{5}O_{2}][Ph_{3}P=N^{\pm}PPh_{3}]_{3}$ (0.2 mmol) in $CH_{2}Cl_{2}$ (10 ml). ^b All products except for <u>3d</u> and <u>3e</u> were identical with authentic samples. Yields were determined by ¹H NMR and TLC. ^C Crystalline radical dimer was added. ^d New compound whose analytical and spectral data are in good agreement with the structur Mp: <u>3d</u>, 88 °C(decomp); <u>3e</u>, 81 °C(decomp). ¹H NMR(CDCl₃) δ , C=CH: <u>3d</u>, 6.63 (s); <u>3e</u>, 6.67 (

The formation of the hydroperoxides $\frac{3}{2}$ and $\frac{5}{2}$ obviously indicates the direct radical combination between $\frac{1}{2}$ and the superoxo complex leading to peroxyquinolato Co(III) complexes one of which is depicted as 3^{-} Co(III) in the scheme, although they were not isolated. The radical coupling also occurs in DMF at -70 °C. The reaction with $\underline{1}\underline{c}-\underline{9}$ around 0 °C resulted predominantly in the electron transfer from the superoxo complex to $\underline{1}$. The electron transfer also takes plac quantitatively when the mixture obtained from the reaction with $\underline{1}\underline{c}-\underline{9}$ in DMF at -70 °C was warm up to 0 °C. These results strongly suggest that the reaction involves a π -complex intermediate $\underline{2}$, analogous to that in base-catalyzed reaction of hydroperoxides $\underline{3}$ and $\underline{5}$ leading to the formation of the parent phenols $\underline{4}$.⁴ This is due to a strong ionic nature of the Co-0 bond in the peroxyquinolato Co(III) complexes.³ In the reaction with $\underline{1}\underline{a}$, on the contrary, the combination takes place predominantly at the <u>ortho</u> position. This fact and the exclusive formation of $\underline{3}\underline{c}$ from $\underline{1}\underline{c}$ provide decisive evidence that superoxo Co(III) complex mediated regioselective dioxyg incorporation into $\underline{4}$, where $\underline{4}\underline{a}$ and $\underline{4}\underline{c}$ give $\underline{3}\underline{a}$ and $\underline{5}\underline{c}$, respectively.^{1,2} does not involve the radical combination between $\underline{1}$ and Co(III)·0₂⁻¹. The present reaction also provides a unique method for preparation of peroxy-<u>p</u>-quinols with an electron withdrawing group R in $\underline{3}$.

Beferences

1) A. Nishinaga and H. Tomita, J. Mol. Cat., 7, 179 (1980).

- 2) A. Nishinaga, H. Tomita, and T. Matsuura, Tetrahedron Lett., 2893 (1979).
- 3) A. Nishinaga, H. Tomita, and T. Matsuura, Tetrahedron Lett.(1980) in press.
- 4) A. Nishinaga, T. Shimizu, and T. Matsuura, J. Org. Chem., <u>44</u>, 2983 (1979).

(Received in Japan 28 May 1980)